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Meaning of distances

e maximal separation (L)
e energy-like content (L»)
e integral of flow-rate (L)
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Power spectra

Periodogram, Blackman-Tukey, Levinson, Durbin, Burg, ...
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Spectral analysis

= [eMdX(0) E{u(k)u(k+0)} = [ef(0)
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Signals vs. power densities

time-signals power distributions

(w1 — us) “error signal” (fi — f2) is not a “signal”
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Communications

Speech analysis/coding

New Orleans, December 2007
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Medical diagnostics

Temperature field

Noninvasive temperature sensing
with E. Ebbini & A.N. Amini

In IEEE Trans. on Biomedical Engineering, 2005
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http://www.sandia.gov/radar/images/3dsar.qgif
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Quantitative analysis

/

different

methods

N

How can we compare power spectra?
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Quantitative analysis

ol

same

M M met_f:od

How can we compare power spectra?
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How can we compare power spectra?

Question:
what is a natural notion of distance
between power spectral densities?

quantify uncertainty
signal classification, detect structural changes

system identification, tune algorithms, sensor technology
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Plan of the talk

Metrics based on

prediction theory (Szegd, Kolmogorov)
parallels with information geometry (Fisher, Rao)

transport geometry (Monge-Kantorovich)

geometry
. . Za Ry
Case studies & applications Predicton-based
geometry

applications
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Setting

e U1, Uy, U, Uy - . e U1, Uy, U, Uy - .

f1(0) 12(0)
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What is it we would like to have?

goance( | a )

£(0),  fal0)

® metric
e meaningful & natural

candidates?
Kullback-Leibler, Bregman, ltakura-Saito, Makhoul,..

convex functionals
perceptual qualities
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Linear prediction
geometry

N

One'Step'ahead prediction: uPresent - upresent’past

with Upresent|past = Zpast QLU

E{|wpresent — ﬂpresem|past]2} = variance of prediction error

New Orleans, December 2007 15



Szego’s theorem

One-step-ahead prediction:

1
least error variance = exp {2— / log f (9)039}
7

it is a geometric mean...

exp{L10g fi +1og fu + 1og 1)} = /Fofaf
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p. o
Degradation of prediction error variance

Use f5 to design a predictor (assuming ¢, tiye).

Then compare how this performs on u, 1. against the optimal based on fi.

degraded variance
N\

/7 N\
9 : :
E{|uwy, present — E af,past Uf, past| } — optimal variance

past >0

optimal variance
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Degradation of prediction variance

degraded variance
N\

E{ ‘uflapfesent o Z @ fy,past ufl,pa8t|2}

past

arithmetic mean of (%)

optimal variance geometric mean of (%)

arithmetic over geometric mean (> 1)

New Orleans, December 2007 18



Riemannian metric

flzfa
o=/+A

degraded variance
N\

/7 2\ . )
E{|wy, present — g af,past Uf, past| } — optimal variance
past

2

optimal variance

oo = 2] () (L G))

variance-like: (mean square) - (arithmetic-mean)?
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Geodesics

Paths f, (r € |0, 1]) between f, f1 of minimal length fol VO (fry frrdr)

each point represents a different power spectral density
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Geodesics

The geodesics are exponential families:

_ o (hY
fr_fo fO )

= exp{ (1 —r)log (fy) +rlog(f

re|0, 1

morphing
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Geodesic distance: metric

The path-length is

i 1 [" S
Ao 1) =15 10gfo> d9_<%/ bg(fo) )

variance-like distance on logarithms: (mean square) - (arithmetic-mean)2
scale-insensitive, “shape” recognizer

151 1
0

-1.5F q

-25F B

In IEEE Trans. on Signal Processing, Aug. 2007 10g % — 1Og<f1> T 1Og(f0>
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Information
geometry

Prediction-based
geometry
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Information geometry — parallels

f ~ p : probability density

I = Ey{(dxlogpa)’} 6N

Fisher information metric

AQ
1:2?
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Information geometry — parallels

Expected “message-length increase’:

R. Leibler

H(p:|po) :( Zpllogpo) ( Zpllogpl)

Fisher information metric S. Kullback
Po=0D
p=p+A

AQ
1:23
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Information geometry — parallels

Geodesics: great circles

p — +/P € Sphere

Geodesic distance: Arclength
Battacharyya distance
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Information vs.

great circles

New Orleans, December 2007
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Information geometry — parallels

Chentsov’s theorem:

Stochastic maps are contractive

Ability to differentiate decreases under Fisher metric

Vi)
p(2 — M| p(2 | o |
p(3) p(3) Fisher metric is the unique

Riemannian metric with this property
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What is the analog for power spectra?

addititive noise

f = f + fnoiso

multiplicative noise

f = f*fnoise

continuity of moments (second-order statistics)

f > integrals of f
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Information
geometry

Prediction-based

geometry
Transport

geometry
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P
Transport geometry

geometry

Monge-Kantorovich problem
minimize cost of transferring mass

/cost(m — ) X mass(dx, dy)

L. Kantorovich

New Orleans, December 2007 31



Transport for power spectra

Transport-based metric

distances do not increase sssasssnpannans }J ................ ................. ................ ................. _

under additive noise
and multiplicative noise
with power < 1

+ continuity of statistics

metric = min (cost of transport(fy, fi) + normalization)

with Johan Karlsson (KTH) & Mir Shahrouz Takyar
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Prediction-based
geometry

Transport
geometry

i 7

applications
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e

Fitting geodesics

Least squares: The theory of motion of heavenly bodies, Gauss, K.F.
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Tracking with geodesics

Time

— - = o oW oW
S= w = @m = & o= a
W

oy ey
N A A P

Frequency (Hz)

Time with Xianhua Jiang
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Voice & sounds

=

5

John Weissmuller's MGM Tarzan Yell
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Images & more

Geometric active contours

%CUIVG — VCurve metrlc(flﬂSld@? fOUtSide)

-

ORIGINAL
CURVE DRAWN'\ '\ o

with Romeil Sandhu and Allen Tannenbaum
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Images & more

with Romeil Sandhu and Allen Tannenbaum
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Concluding thoughts

Metrics e Operational significance
in spectral analysis e Effect of natural transformations

Information
geometry
Prediction-based %
geometry
- Transport
geometry
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Thank you for your attention

thanks to

Xianhua Jiang Johan Karlsson Romeil Sandhu

il

. g

Allen Tannenbaum & Anders Lindquist

National Science Foundation, AFOSR, and Hermes-Luh endowment
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