How Do We Learn to Use Learning in Manufacturing Systems?

Kira Barton

Robotics Department Department of Mechanical Engineering University of Michigan

Conference on Decision and Control

Cancún, Mexico

Dec. 7th, 2022

Zahra Afkhami Lucid Motors

Berk Altin NVIDIA

Christopher Pannier UM – Dearborn

Efe Balta ETH

Isaac Spiegel Terran Orbital

Nazanin Farjam UM

Mamadou Diagne UCSD

Patrick Sammons Quantitative Strategies

Leontine Aarnoudse TU/e

Tom Oomen TU/e

Ferdous Alam OSU

David Hoelzle OSU

Basic Overview: Learning in Manufacturing

Outline

Learning Case Study:

- A. Challenges in additive manufacturing modeling and control
- B. Learning applied to an additive manufacturing example

Open Opportunities for Learning + Control to Advance Manufacturing

Learning in Manufacturing

Learning in Manufacturing

- Ability to derive a new understanding of a system using *information* from the *system+*
- Applying the new knowledge towards an updated 'model/reference signal/control input/controller' to enhance system performance

System+

- Resources
- Operators
- SMEs
- Supply chain
- Environment
- Other systems

Information

- Sensor data
- SME knowledge
- Physics-based models
- Historical data

Learning in Manufacturing

Common methods of learning applied in manufacturing systems

Convolutional Recurrent Neural Nets

Data-driven modeling

Iterative Learning Control (ILC) Batch process: Initial condition reset

Repetitive Control (RC) Continuously-operated process: Initial condition is given by terminal condition at previous cycle

Repetitive and Adaptive Control Strategies

BARTON RESEARCH GROUP Intelligent. control. Innovation

Needs for Intelligent Manufacturing – Control Challenges

- Flexible and agile responses: disruptions, new products, customization
- Advanced technology needs: faster, higher-resolution, multi-material, multiphase dynamics
- Multiple domain dependencies: spatial, temporal, material phase

Printed sensor tattoos

nicoledigiose.com

https://movitherm.com/

Learning within a Manufacturing Domain

Advantages

Original Dataset

7

Challenges

Basic Overview: Learning in Manufacturing

Outline

Learning Case Study:A. Challenges in additive manufacturing modeling and controlB. Learning applied to an additive manufacturing example

Open Opportunities for Learning + Control to Advance Manufacturing

Additive Manufacturing – diverse application domain

Extrusion Printing

9

Additive Manufacturing – high-resolution jet based printing example

Introduction – Electrohydrodynamic jet (e-jet) Printing

Advantages:

- Micro-Nano scale resolution
- Multi-material capability
- Non-planar substrates
- Enable complex designs
- Repeatable
- Fast
- Not expensive

How can learning and control lead to enhanced printing performance?

Challenges in Additive Manufacturing

Process / Design Parameters:

- Ink material / properties
- Substrate material / treatments
- Nozzle material •
- Nozzle size / shape •
- Offset height between nozzle/substrate
- **Back pressure**
- Applied voltage signal: DC, pulse parameters
- Stage speed

Manual process parameter tuning limits the speed and adoption of many additive manufacturing processes

Desired Disturbed Output Output 2 µm)2 μm Top view

11

Spraying

Challenges in Additive Manufacturing

Why is real-time feedback not a viable option for this process?

Challenges in Additive Manufacturing - Sensing

Indirect measurements with inferred behavioral responses

Fast temporal dynamics + high-resolution spatial dynamics

Critical dynamics are too fast or too small, while the true behaviors of interest cannot be monitored in real time

Challenges in Additive Manufacturing - Modeling

Multimodality

Multiphysics

Governing physics are complex and often difficult to write as a simple ODE

Control challenges:

- High-speed temporal dynamics
- High-resolution spatial dynamics
- No real-time sensing
- Unmodelled dynamics

Dynamics are not conducive to real-time feedback control. Could leverage repetitive behaviors to control iteratively.

Basic Overview: Learning in Manufacturing

Outline

Learning Case Study:

A. Challenges in additive manufacturing modeling and control

B. Learning applied to an additive manufacturing example

Open Opportunities for Learning + Control to Advance Manufacturing

Afkhami Z, et al. Adv. Mat. Tech., 2020;5(10):2000386.

- **Goals:** Autonomous regulation of product quality
 - Automatic data validation and processing

Inner loop – Iterative Learning Control for process regulation

Introduction to Iterative Learning Control (ILC):

- Repetitive systems
- Reject repetitive disturbance
- Robust to model uncertainty
- Use past input and error signals

i : Iteration number

- *fi*∶ Input
- g_i : output
- g_d : Reference
- e_{j: Error}
- L_f : Input filter
- L_e : Error filter

First order ILC (FO-ILC):

Next Current Current iteration input iteration input iteration error

$e_i = gd - g_i$

Higher order ILC (HO-ILC):

iterations

Spatial Plant: 2D Impulse Function

Hoelzle and Barton, IEEE TCST, 2016.

Performance Objectives:

- Total error $(e_{l,j})$ decreases over layers (*l*): $\vec{e}_{l,j} = g_l^d \vec{g}_{l,j}$
- Incremental error $\Delta e_{l,j}$ decreases over layers (l) & devices (j)

$$\Delta \vec{e}_{l,j} \triangleq \Delta \vec{g}_l^d - \Delta \vec{g}_{l,j} = \Delta \vec{e}_l + \alpha_1 \Delta \vec{e}_{l-1} + \dots + \alpha_N \Delta \vec{e}_{l-N}$$

Number of layers: $\frac{\alpha_i}{i} = \frac{\alpha}{i} < 1$,

Controller Design: Norm Optimal SILC Cost Function:

$$\Im_{SILC} = \left\| \vec{e}_{l,j+1}^{w} \right\|_{q,\mathbf{I}}^{2} + \left\| \vec{f}_{l,j+1} \right\|_{s,\mathbf{I}}^{2} + \left\| \vec{f}_{l,j+1} - \vec{f}_{l,j+1} \right\|_{r,\mathbf{I}}^{2} + \sum_{i=1}^{N=L-1} \beta_{i} \left\| \vec{f}_{l,j+1} - \vec{f}_{l-i,j+1} \right\|_{r,\mathbf{I}}^{2}$$

Performance tracking

Robustness to Co model uncertainty no

Convergence rate and noise attenuation over j

Convergence rate and noise attenuation over *l*

$$\Delta \vec{e}_{l,j} \triangleq \Delta \vec{g}_l^d - \Delta \vec{g}_{l,j} = \Delta \vec{e}_l + \alpha_1 \Delta \vec{e}_{l-1} + \dots + \alpha_N \Delta \vec{e}_{l-N}$$

Number of layers: $\alpha_i = \frac{\alpha}{i} < 1$, $\beta_i = \frac{\beta}{i} < 1$

Solve:	Learning Filters:
$\frac{\partial \mathfrak{I}_{SILC}}{\partial \vec{f}_{l,i+1}} = 0$	$\mathbf{L}_{f}(q, s, r, \alpha, \beta)$ $\mathbf{L}_{e}(q, s, r, \alpha, \beta)$
$df_{l,j+1}$	$\mathbf{L}_{e}(q, s, r, \alpha, \beta)$

22

Convert higher order to first order for analysis

 $\vec{Z}_l = \begin{bmatrix} \vec{f}_l \\ \vdots \\ \vec{f}_2 \\ \vec{f}_1 \end{bmatrix}$

FO-ILC update law:
$$\vec{Z}_{l,j+1} = \mathbf{F}_{l,j}\vec{Z}_{l,j} + \vec{R}_r \rightarrow \mathbf{F}_{l,j} = \mathcal{F}(\mathbf{T}_{l,j}^h, \mathbf{T}_{l,j}^{vi})$$

F is high dimensional

Controller Design: Stability Analysis:

FO-ILC update law: $\vec{Z}_{l,j+1} = \mathbf{F}_{l,j}\vec{Z}_{l,j} + \vec{R}_r$ $\mathbf{F}_{l,j} = \mathcal{F}(\mathbf{T}_{l,j}^h, \mathbf{T}_{l,j}^{\nu i})$

Goal: Asymptotic stability: $\rho(\mathbf{F_0}) < 1$

• Estimate the robustness radius ($\|\Delta \mathbf{H}_{l,j}\| < r_{AIU}$) such that the iteration varying SILC update law remains stable ($\|\mathbf{F}_{l,j}\| < 1$)

 $\mathbf{F}_{l,j} = \mathbf{F}_0 + \Delta \mathbf{F}_{l,j} \; (\Delta \mathbf{H}_{l,j})$

• How do we design *r_{AIU}* to ensure robustness?

$$\mathbf{H}_{l,j} = \mathbf{H}_0 + \Delta \mathbf{H}_{l,j}$$

Nominal Model plant uncertainty

Nominal

Robustness radius design:
$$r_{AIU}(q, s, r, lpha, eta)$$
 3(2

SILC HO-SILC

$$|Z| = 1$$

$$\rho(\mathbf{F}_0) < 1$$

$$P(\mathbf{F}_{l,j}) < 1$$

$$\Re(Z)$$

 $\left\|\Delta \mathbf{H}_{l,j}\right\| < r_{AIU}$

design

24

t(s)

Controller Performance:

Z Afkhami, et al. TCST, (2022). Afkhami, Hoelzle, Barton, (2022). IFAC-PapersOnLine

Can we do anything to address the increasing errors?

Model Predictive Control (MPC)

Leverage MPC to enhance robustness

Goal:

- Learn from previous layers using SILC design
- Predict future layer deposition errors using MPC design
- Predict the optimal input signal of multiple layers ahead ($ec{f}_{l+1},...,ec{f}_{l+N}$)
- At each printing pass, only the input signal of the first layer, \vec{f}_{l+1} , is considered

SILC-MPC Framework:

SILC cost function:

$$\Im_{SILC} = \|\vec{e}_{l+1}\|_{Q_{e1}}^{2} + \|\Delta\vec{e}_{l+1}\|_{Q_{\Delta e}}^{2} + \|\vec{f}_{l+1}\|_{S_{1}}^{2} + \|(\vec{f}_{l+1} - \vec{f}_{l})\|_{R_{1}}^{2}$$
Performance Robustness to Convergence rate and noise attenuation
MPC cost function:

$$\Im_{MPC} = P_{N} \|\vec{e}_{l+N}\|_{I}^{2} + \sum_{i=2}^{N} \|\vec{e}_{l+i}\|_{Q_{e_{i}}}^{2} + \|\vec{f}_{l+i}\|_{S_{i}}^{2} + \|(\vec{f}_{l+i+1} - \vec{f}_{l+i})\|_{R_{i}}^{2}$$
S. t. $\vec{0} < \vec{f}_{l+i} < \vec{F}$
Terminal cost Model predictive horizon Improves stability properties
SILC-MPC cost function:

$$\Im_{SILC-MPC} = \Im_{SILC} + \Im_{MPC}$$
s. t. $\vec{0} < \vec{f} < \vec{F}_{max}$ Bounded control signal

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

$$u = \begin{bmatrix} S_{i} & \cdots & 0 \\ 0 & \cdots & S_{N} \end{bmatrix}$$

Simulation Results

Forward prediction and iterative learning control leads to optimal performance

Basic Overview: Learning in Manufacturing

Outline

Learning Case Study:

- A. Challenges in additive manufacturing modeling and control
- B. Learning applied to an additive manufacturing example

Open Opportunities for Learning + Control to Advance Manufacturing

Opportunities to Use Learning in Additive Manufacturing - Al

- **Goals:** Autonomous regulation of product quality
 - Automatic data validation and processing

Inner loop – Iterative Learning Control for process regulation

Opportunities to Use Learning in Additive Manufacturing - Al

Reinforcement Learning

Transfer learning framework in the context of RL for manufacturing decision making

Md Ferdous Alam, Max Shtein, Kira Barton & David J. Hoelzle, American Control Conference (ACC), 2021 and 2022. Md Ferdous Alam, Max Shtein, Kira Barton & David J. Hoelzle, IEEE Control Systems Letters (L-CSS)

Reinforcement Learning for Process-Structure-Property Relationship

property relationship

relationship

Why is implementing Machine learning a challenge in manufacturing systems

Distribution of features changes from simulation model to manufactured artifact

Output characteristics of an artifact change from simulation to manufactured artifact

20

25

30

_Spectral response from manufactured artifacts

Spectral response

rom FEM simulations

Need a learning strategy that can handle model uncertainty

How do other transfer learning strategies perform?

Representation transfer with probabilistic reward modeling

Reward obtained from final artifact

Md Ferdous Alam, Max Shtein, Kira Barton & David J. Hoelzle, IEEE Control Systems Letters (L-CSS) "Reinforcement Learning Enabled Autonomous Manufacturing Using Transfer Learning and Probabilistic Reward Modeling", ThCT04.3

Opportunities to Use Learning in Additive Manufacturing - Al

- Applications of Learning:
- Control design
- Functional device design
- Model identification and updating
- Anomaly detection and classification
- In situ quality control

Open Control Questions:

- Performance and robustness guarantees for combined ML + Learning Control mtds.
- Robustness requirements for automatic model updating
- Uncertainties associated with manufacturing defects

Thank you for your attention!

CCTA 2023

- Bridgetown, Barbados
- Venue: Hilton Barbados
- Date: 16-18 August, 2023
- Papers due: Jan. 31, 2023
- <u>https://ieeeccta.org/</u>

Conference on Control Technology and Applications

Acknowledgements

Industry Collaborators:

- Hitachi + JR Automation
- > Dow
- Rockwell Automation
- General Motors
- National Institute of Standards and Technology (NIST)
- Applied Dynamics International
- Boeing

For More Information Contact

Kira Barton

Associate Professor Department of Robotics Department of Mechanical Eng. bartonkl@umich.edu

University of Michigan

Research collaborators:

- Ohio State University
 University of Illinois
- University of Illinois
- Air Force Research Lab
- Army Research Lab

HITACHI

Rockwell Automation

All the students that have contributed to this research!

Thank You!

