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INFORMATION  FLOW  in  CONTROL  SYSTEMS

Limited channel capacity, data encryption, coarse sensing & actuation

errors in signal measurement, transmission, and reconstruction        

need robust algorithms
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TWO  SPECIFIC  SCENARIOS

• Observers robust to measurement errors, with
applications to control and synchronization

• State estimation and model detection with finite data rate: 
an entropy approach

System
Sensor / 
Encoder Channel

Decoder / 
Estimator

Controller

3 of 27



TWO  SPECIFIC  SCENARIOS

• Observers robust to measurement errors, with
applications to control and synchronization

• State estimation and model detection with finite data rate: 
an entropy approach

System
Sensor / 
Encoder Channel

Decoder / 
Estimator

Controller

3 of 27



BASIC  MOTIVATING  QUESTION

How much data is needed to estimate the system’s state?

Contractive system:

true
traj.

Any trajectory can be used
to approximate the real one

no data needed

General system:

How many trajectories (or initial states) 
are needed to approximate all others?

true
traj.

This relates to entropy and data rate

need to make this precise
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»( x; t ) – solution from initial state     after timex t

Pick: time horizon             , resolution            , 
desired exponential convergence rate1

T > 0 " > 0

_x = f ( x) ; – known compact set

AN  ENTROPY  NOTION

j»( x; t ) ¡ »( xi ; t ) j < "e¡ ®t 8t 2 [0; T ]

Kolmogorov, Sinai, Adler, …, Boichenko, Colonius, Kawan, Leonov, Matveev, Nair, Pogromsky, Savkin, …

[1] L, Mitra, Entropy and minimal bit rates for state estimation and model detection, TAC, 2018  

Estimation entropy:

A set of points      , …,                is           -spanning if                        :

cardinality      of smallest -spanning setN
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TOY  EXAMPLE

– known compact interval

Goal: estimate        using finite-data-rate encoding of   -values

• divide reachable set again into     subintervals

sampling 
period • record the index of the interval containing

• repeat

• divide     into     equal intervals with centers

of this gives

At            , we know        is in an interval of length

Entropy: the set                             is         -spanning if

This encoding scheme uses data at              bits per time unit 

To estimate        with error converging to 0 as          we need
need data rate of            bits  (or nats)
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CONTRACTION / EXPANSION  RATE

_x = f ( x) ;Back to general case: 

We want to find a constant            s.t.

as long as solutions stay in a compact set (or globally)

E.g.,     can be Lipschitz constant of 

If    is      , a sharper bound is obtained with

where       is Jacobian matrix and 

is matrix measure

(e.g., for     -norm                                                    )

»( x; t ) – solution from     after timex t
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BOUNDS  on  ENTROPY

Sketch of proof:

Upper bound: 

_x = f ( x) ;

K• centers of balls of radius                     that cover

form а          -spanning set 

• if we use, e.g.,     -norm balls (cubes), need

per dimension to cover a unit hypercube

•

need to count them
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For linear system                  this result can be refined to_x = Ax

BOUNDS  on  ENTROPY

Lower bound comes from computing                       by Liouville’s
trace formula and counting  # of balls that can cover this volume1,2

Similar argument3 gives a lower bound for nonlinear system:

[1] Savkin, Analysis and synthesis of networked control systems, Automatica, 2006

[2] Schmidt, MS Thesis, UIUC, 2016
[3] Colonius, Minimal bit rates and entropy for exponential stabilization, SICON, 2012  
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Upper bound: 

_x = f ( x) ;



EXAMPLE:  LORENZ  SYSTEM
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EXAMPLE:  LORENZ  SYSTEM

_x1 = ¾x2 ¡ ¾x1
_x2 = µx1 ¡ x2 ¡ x1x3
_x3 = ¡ ¯x3 + x1x2

For initial set

Jacobian is 

Its matrix measure is  

hence

and

can compute      s.t.
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STATE  ESTIMATION  PROCEDURE 

Sensor / 
Encoder Channel

Decoder / 
EstimatorSystem
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STATE  ESTIMATION  PROCEDURE 

Sensor / 
Encoder Channel

Decoder / 
Estimator

sampling 
period

10 of 27



STATE  ESTIMATION  PROCEDURE 

Sensor / 
Encoder Channel

Decoder / 
Estimator

sampling 
period

Properties: and 
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DATA  RATE  and  EFFICIENCY  GAP

is divided into              sub-boxes per dim      

is drawn from alphabet of size 

In fact, quantization points define a spanning set

More precisely: # of possible codewords over    
rounds,     , equals cardinality of            -spanning set

bit rate 

bit rate is                               

So, entropy gives the minimal required data rate for state estimation1

[1] Savkin, Analysis and synthesis of networked control systems, Automatica, 2006

Efficiency gap of our algorithm is

which is the price to pay for having a constructive procedure

which is our upper bound on

# smallest spanning set
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MODEL  DETECTION  PROBLEM

Want to distinguish between two competing system models 

using finite-data-rate state measurements (as before)

Need the two systems to be “sufficiently different”

– solution of system    from initial state     after time   ,x t

Call the two models separated if                s.t. :

Separation property holds in generic situations, if     is small enough1

[1] L, Mitra, Entropy and minimal bit rates for state estimation and model detection, TAC, 2018  

Interpretation: for nearby initial states, trajectories of the two systems
diverge faster than would be possible if they both came from system

– sampling period, – expansion rate of system
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hypothesized model
true model

box size

MODEL  DETECTION ALGORITHMPROBLEM
With separation assumption, our previous state estimation algorithm 
will eventually falsify model if it is incorrect
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With prior knowledge of    , it will also certify model    if it is correct

model incorrect!



ONGOING  WORK:  INTERCONNECTED  SYSTEMS

Jacobian blocks: 

Assume: 

Structure matrix:

is a Metzler matrix       eigenvalue                is real

Entropy bound1:                                   

[1] L, On topological entropy of interconnected nonlinear systems, IEEE CSL/CDC, 2021  
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EXAMPLE:  LORENZ  SYSTEM  (revisited)

For                                we have 

Can view the system as interconnection of 3 scalar subsystems

Jacobian is 

Can take 
Previous result gives  

Need matrix                s.t. :                         ,

Improves on earlier matrix measure bound, but far from being tight1

_x1 = ¾x2 ¡ ¾x1
_x2 = µx1 ¡ x2 ¡ x1x3
_x3 = ¡ ¯x3 + x1x2

[1] Pogromsky, Matveev, Estimation of topological entropy via direct Lyapunov method, Nonlinearity, 2011  
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ONGOING  WORK:  SWITCHED  SYSTEMS

_x = f ¾( x)

• are modes_x = f p( x) ; p 2 P

• is a switching signal

For each mode    , define active time                                         and

active rate

For example, entropy of switched linear system                  satisfies1

[2] Yang, L, Hespanha, Topological entropy of switched nonlinear systems, HSCC, 2021  

Extensions to switched nonlinear systems also possible2

– these play a role in entropy bounds

Can define entropy as before for each fixed switching signal

[1] Yang, Schmidt, L, Hespanha, Topological entropy of switched linear systems, MCSS, 2020;  

These bounds can inform control design for switched systems
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TWO  SPECIFIC  SCENARIOS

• Observers robust to measurement errors, with
applications to control and synchronization

• State estimation and model detection with finite data rate: 
an entropy approach

error propagation

Few results for nonlinear systems are available1,2

[1] Khalil, Praly, High-gain observers in nonlinear feedback control, IJRNC, 2013 

errors (due to
quantization, 
sampling, etc.)

x y

x̂

u

+
+

Plant

Controller Observer

Sensors

[2] Chong, Postoyan, Nesic, Kuhlmann, Varsavsky, A robust circle criterion observer, Automatica, 2012 
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SENSITIVITY  vs.  ROBUSTNESS

Both properties are captured by input-to-state stability (ISS)1:

_x = ¡ x + xd (   unbounded for           )x d ´ 2

(may have            even if           )x " 1 d ! 0_x = ¡ x + x2d

_x = f ( x; d) – state,      – disturbance 

[1] Sontag, Smooth stabilization implies coprime factorization, TAC, 1989 

Asymptotic stability for            does not imply bounded response 
to bounded disturbances: 

or converging response to vanishing disturbances: 

This will be our benchmark robustness notion, with some caveats

class  class 

jx( t ) j · ¯( jx( 0) j; t ) + °
³
kdk[0;t ]

´

(“ISS gain”)

sup norm
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ASYMPTOTIC–RATIO  ISS  LYAPUNOV  FUNCTIONS1

These are functions           whose derivative along solutions satisfies

where             ,     is continuous non-negative,                      , and g

Can show: ISS          asymptotic-ratio ISS Lyapunov function , 9

[1] L, Shim, Asymptotic ratio characterization of input-to-state stability, TAC, 2015 

(by reducing to more standard Lyapunov characterizations of ISS)

Example (scalar):                                     , _x = ¡ 1
1+ d2 x + d V ( x) := 1

2x2

g( jxj; jdj)

= ¡ x2 + x2 d2

1+ d2 + xd_V = ¡ x2

1+ d2 + xd 
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OBSERVER  SET-UP

State estimation error:

Plant: _x = f ( x; u) ; y = h( x; d) ( x 2 Rn)

Observer: _z = F ( z; y; u) ; x̂ = H ( z; y) ( z 2 Rm)

Full-order observer: ; reduced-order: m < n

+
–

e

Sensitivity issue1: can have              when
yet              for arbitrarily small  

e ! 0
d 6= 0

d ´ 0

xu
Plant

y
+
+

d

Sensors
x̂

Observer

[1] Shim, Seo, Teel, Nonlinear observer design via passivation of error dynamics, Automatica, 2003 
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ROBUSTNESS  of  OBSERVER

Turns out to be too restrictive, not realistic
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Plant: _x = f ( x; u) ; y = h( x; d)
Observer: _z = F ( z; y; u) ; x̂ = H ( z; y)
Estimation error: e := x̂ ¡ x

je( t ) j · ¯( je( 0) j; t ) + °
³
kdk[0;t ]

´
ISS-like robustness:

Modification: impose ISS only as long as          are boundedx; u
(reasonable, as boundedness can come from controller design)

s.t.



ROBUSTNESS  of  OBSERVER

Plant: _x = f ( x; u) ; y = h( x; d)
Observer: _z = F ( z; y; u) ; x̂ = H ( z; y)
Estimation error: e := x̂ ¡ x

Call such observers quasi-Disturbance-to-Error Stable (qDES)1

whenever kuk[0;t ] ; kxk[0;t ] · K

je( t ) j · ¯K ( je( 0) j; t ) + ° K ( kdk[0;t ] )

(reasonable, as boundedness can come from controller design)

[1] Shim, L, Nonlinear observers robust to measurement disturbances in an ISS sense, TAC, 2016 

ISS-like robustness: s.t.

Accordingly, asymptotic-ratio Lyapunov condition only needs to 
hold for bounded
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Modification: impose ISS only as long as          are boundedx; u



EXAMPLE:  LINEARIZED  ERROR  DYNAMICS1

Plant: _x = Ax + f ( Cx; u) ; y = Cx + d
with             detectable pair, so        s.t. is Hurwitz     ( A ; C) 9 L A ¡ L C

Observer: _z = Az + f ( y; u) + L ( y ¡ Cz) ; x̂ = z

whereV := e> P e P ( A ¡ L C) + ( A ¡ L C) > P = ¡ I

Analysis of error dynamics:

Also qDES are high-gain observer, circle-criterion observer

¡ ¡ ¡ ¡ !
jej! 1

0

[1] Krener, Isidori, Linearization by output injection and nonlinear observers, SCL, 1983 

Assume

observer is qDESAsymptotic ratio:

– linear in
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y = x1

REDUCED–ORDER  qDES OBSERVERS

Plant (after a coordinate change):

_x1 = f 1( x1; x2; u)

_x2 = f 2( x1; x2; u)

Observer:

x̂1 = y

_z = f 2( y; z; u)

x̂2 = z

e := z ¡ x2; V = V ( e)

_V = @V
@e

h
f 2( x1; x2 + e; u) ¡ f 2( x1; x2; u)

i

+ d

Assume this is                   , then we have an 

asymptotic observer:              (without    )e ! 0
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REDUCED–ORDER  qDES OBSERVERS

Plant (after a coordinate change):

_x1 = f 1( x1; x2; u)

_x2 = f 2( x1; x2; u)

e := z ¡ x2; V = V ( e)

_V = @V
@e

h
f 2( y; x2 + e; u) ¡ f 2( x1; x2; u)

i

+ d

assumed to be

Observer:

_z = f 2( y; z; u)

x̂1 = y

x̂2 = z
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REDUCED–ORDER  qDES OBSERVERS

Plant (after a coordinate change):

_x1 = f 1( x1; x2; u)

_x2 = f 2( x1; x2; u)

e := z ¡ x2; V = V ( e)

_V = @V
@e

h
f 2( y; x2 + e; u) ¡ f 2( x1; x2; u)

i

assumed to be

We have:

Assume

Observer:

_z = f 2( y; z; u)

x̂1 = y

x̂2 = z
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REDUCED–ORDER  qDES OBSERVERS

Asymptotic ratio condition:

Plant (after a coordinate change):

_x1 = f 1( x1; x2; u)

_x2 = f 2( x1; x2; u)

Observer:

_z = f 2( y; z; u)

x̂1 = y

x̂2 = z

Under this condition the observer is qDES

came from asymptotic observer property came from Lyapunov function
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+ dy = x1

Synchronization examples that follow are analyzed in this way



ROBUST  SYNCHRONIZATION  and  qDES OBSERVERS

e := z ¡ x2

Robust synchronization:                                                     

whenever                         (in closed loop)kxk[0;t ] · K

je( t ) j · ¯K ( je( 0) j; t ) + ° K ( kdk[0;t ] )

Equivalently: follower is a reduced-order qDES observer for leader

Sufficient condition from before: s.t.9 V = V ( e)

and

(asymptotic ratio condition)

x1

d

+
+

y
_x2 = f 2( x1; x2)
_x1 = f 1( x1; x2)

Leader

_z = f 2( y; z)
: : :

Follower
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8 K > 0 9 ¯K 2 K L ; ° K 2 K 1 s.t.



APPLICATION  EXAMPLE  #1
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Lorenz system



APPLICATION  EXAMPLE  #1

_x1 = ¾x2 ¡ ¾x1
_x2 = µx1 ¡ x2 ¡ x1x3
_x3 = ¡ ¯x3 + x1x2

x1

d

+
+
y

We already mentioned that     is boundedx

Can show qDES from     to                         using d e:=
³

z2¡ x2
z3¡ x3

´

For     arising from time sampling and quantization, we can 

derive an explicit bound on synchronization error which is 

inversely proportional to data rate1

d

_z2 = µy ¡ z2 ¡ yz3
_z3 = ¡ ¯z3 + yz2

ObserverLorenz system

[1] Andrievsky, Fradkov, L, Robust Pecora-Carroll synchronization under communication constraints, SCL, 2018
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APPLICATION  EXAMPLE  #2

µ2

load

Baby version of microgrid synchronization
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APPLICATION  EXAMPLE  #2

_µ1 = ! 1
_! 1 = u1 ¡ `( t ) ¡ D 1! 1

µ2

! 1 !
u1( t ; µ1) =
`( t ) =

control input (mechanical power) 

With integral control:             desired freq. 

electrical load (slowly varying)

! 0
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APPLICATION  EXAMPLE  #2

_µ2 = ! 2
_! 2 = u2 ¡ D 2! 2

_µ1 = ! 1
_! 1 = u1 ¡ `( t ) ¡ D 1! 1

26 of 27

! 1 !
u1( t ; µ1) =
`( t ) =

control input (mechanical power) 

With integral control:             desired freq. 

electrical load (slowly varying)

! 0

Generator 2Generator 1



APPLICATION  EXAMPLE  #2

Objective: connect 2nd generator when µ1 ¼ µ2; ! 1 ¼ ! 2

e := ! 2 ¡ ! 1V = e2• gives DES (ISS) from     to  d

• frequency regulation and synchronization meet IEEE standards
for realistic disturbance values1

Measurements:

PMU corrupted

by disturbance

µ1

d

+
+

_µ2 = ! 2
_! 2 = u2 ¡ D 2! 2

_µ1 = ! 1
_! 1 = u1 ¡ `( t ) ¡ D 1! 1

(becomes qDES for phase-dependent damping,                        ) D 1 = D 1( µ1)

[1] Ajala, Dominguez-Garcia, L, Robust leader-follower synchronization of electric power generators, SCL, 2021
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u1( t ; µ1) =
`( t ) =
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