IEEE.org | IEEE Xplore Digital Library | IEEE Standards | IEEE Spectrum | More Sites
Call for Award Nominations
More Info
Fri, July 3, 2020
Recent radical evolution in distributed sensing, computation, communication, and actuation has fostered the emergence of cyber-physical network systems. Examples cut across a broad spectrum of engineering and societal fields. Regardless of the specific application, one central goal is to shape the network collective behavior through the design of admissible local decision-making algorithms. This is nontrivial due to various challenges such as the local connectivity, imperfect communication, model and environment uncertainty, and the complex intertwined physics and human interactions. In this talk, I will present our recent progress in formally advancing the systematic design of distributed coordination in network systems. We investigate the fundamental performance limit placed by these various challenges, design fast, efficient, and scalable algorithms to achieve (or approximate) the performance limits, and test and implement the algorithms on real-world applications.